
Truncation Errors in Two Chebyshev 
Series Approximations 

By David Elliott 

1. Introduction. Suppose a function f(x) is defined for -1 < x ? 1, and is of 
bounded variation in this range. Thenf(x) can be expanded in a convergent series of 
Chebyshev polynomials Tn(x) as 

00 

(1.1) f(x) = E' anTn(x). 
n0 

Z denotes a sum whose first term is halved, and Tn(x) denotes the Chebyshev 
polynomial of the first kind of degree n, defined by 

(1.2) Tn(x) = cos nO, where x = cos 0, for n = 0, 1, 2, 

The coefficients an are given by (see [1]) 

(1.3) an = Jf j f(x( _ -) 
dx for n = 0, 1,2, . 

A useful polynomial approximation to f(x) can be found by truncating the infinite 
series in equation (1.1). Indeed, for many of the more commonly used functions, 
Clenshaw [3] has tabulated the coefficients an, as given by equation (1.3), to 20 
decimal places. In each case we have a polynomial approximation PN(X), say, to 
f(x) where 

N 

(1.4) PN(X) =Ei anTn(x). 
n-0 

However, in attempting to find a suitable polynomial approximation to a general 
function f(x), the integral occurring in equation (1.3) cannot be evaluated ex- 
plicitly, and recourse has to be made to approximate methods for evaluating an. 
The most widely used method is the "curve-fitting" method described by Lanczos 
[1], and, in greater detail, by Clenshaw and Curtis [2]. There are two variations of 
the method which we shall call the "practical" and "classical" methods, respec, 
tively. Suppose we wish to approximate to f(x) by a polynomial of degree N. In 
the "practical" method, we construct a polynomial IN(x) by collocation with 
f(x) at the (N + 1) points xi = cos (7ri/N), i = 0(1 )N, which are the zeros of the 
polynomial [TN+1(X) - TN_1(x)]. In the "classical" method, we construct a poly- 
nomialNd(x) by collocation with f(x) at the (N + 1) points 

xi = cos (Ni + 1) i = 0(1)N, 

which are the zeros of the polynomial TN+1(X). Both IN(x) and 4N(X) are 
"Lagrangian" interpolation polynomials to f(x). In this paper we shall consider 
in some detail the truncation errors VN(X) = f(x) - IN(x) and 4g(x) = f(x) - 
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4)N(X). First, we shall obtain estimates for VN(X) and fN(X) which may be used a 
priori to determine N, the degree of the required polynomial approximation to 
f(x). Secondly, we shall attempt to compare the polynomial approximations 
4PN(X) and N(x) to a given f(x). From the results of Sections 6 and 8, we conclude 
that, in general, IN(X) is to be preferred to (N(X) as an approximation to f(x) on 
the basis of minimizing the maximum truncation error in -1 ? x < 1. We shall con- 
sider only briefly the truncation error PN(X) - f(x) - PN(X). In a recent paper 
[4], Clenshaw has considered the truncation error PN(x) as compared with the 
maximum truncation error obtained using the polynomial of "best fit" of degree N, 
to f(x). However, we have not attempted in this paper to compare DN(X) and 
TN(X) with the polynomial of "best fit." 

In Sections 2 and 3, we discuss the computation of the polynomials IN(x) and 
4PN(X), respectively. Explicit forms for the truncation errors ON(X) and IN (X), in 
terms of contour integrals, are derived in Section 4. Although these results are not 
new, the derivation does give explicit forms for the coefficients in the Chebyshev 
series expansions of (N(X) and JN(X), also in terms of contour integrals. The 
evaluation of the contour integrals for the truncation error is discussed in Sections 
5 and 7, where f(z) is considered to be a meromorphic function and an integral 
function, respectively. In Section 6, we use the results of Section 5 in order to make 
some comparison of the polynomial approximations DN(X) and IN(X), and con- 
clude that IN(X) is to be preferred to 4N,(x) in general. This conclusion is supported 
by the results of Section 8, where we have obtained asymptotic estimates for large 
N of the truncation error in the quadrature method proposed by Clenshaw and 
Curtis [2]. 

2. The Polynomial IN(x). The computation of IN(x) has been discussed in 
some detail by Clenshaw and Curtis [2] and their results will be stated briefly here. 
It is shown that 

N 

(2.1) *TN(x) = E BnNTn(X), 
n=O 

where Z" denotes a sum whose first and last terms are halved. The coefficients 
Bn,N (which depend upon N as well as n) are given by 

N 2Nf 

(2.2) Bn,N = 
2 

E f (xi)Tn(xi) = El f(Xi)Ti(Xn) 

where 

(2.3) xi = cos jV for i 0(1)N. 

Since Tn(xi) = Ti(xn), the coefficients BnN can be evaluated by the elegant method 
for summing a Chebyshev series described by Clenshaw [3]. The relation between 
the coefficients Bn,N and an is given by 

00 

(2.4) Bn,N = an + E (a2pN-n + a2pN+n)a 
p=1 
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We note, in particular, that 

BN_1,N =aN.1 -+ aN+1 + a3N-1 + 

so that, unless the coefficients a. converge very rapidly, BN-1,N will not be a good 
approximation to aN1l. This immediately raises the question of comparing the 
truncation errors #N(X) = f(x) - IN(X), and PN(X) = f(x) - PN(X). Through- 
out this paper we shall be interested in determining not only the truncation error 
for a given value of x in -1 < x < 1, but also the maximum modulus of the trunca- 
tion error in this interval. If we define 

(2.5) pN= max I PN(X) 1, 
-1S2?1 

then equations (1.1) and (1.4) give immediately that 
00 

(2.6) PN? Z Ian. 
nN+1 

From equation (2.1), 
N-1 0o 

(2.7) ON(X) = Ad'(an - Bn,N)Tn(X) + (aN - iBN,N)TN(X) + aT,(x), 
n-0 n-NVil 

and combining this with equation (2.4) we find 
00 

(2.8) ON<2 I an |, 
n-N+1 

where AN is defined by 

(2.9) AN= max I ON(X) I. 
-1?z?1 

Thus, if f(x) is such that the Chebyshev coefficients an are either of the same sign 
or of alternating sign, the truncation error of the polynomial 'N(X) is less than or 
equal to twice that of the polynomial PN(X). 

A simple estimate of GN can be given when the coefficients a. converge rapidly. 
From equation (2.4), we find 

(2.10) lN(x) = aN+l(TN+l(X) - TN-l(x)) + aN+2(TTN+2(X) - TN-2(X)) + 
which gives 

(2.11) PN = 21 aN+, |, approximately. 

3. The Polynomial 4DN(x). The calculation of this polynomial, found by colloca- 
tion with f(x) at the zeros of TN+1(x), has not been discussed as extensively in the 
literature as that of IN(x). We shall therefore consider the 4N(X) polynomial in a 
little more detail than that of JN(x). Now 

N 

(3.1) 4)N(X) =E AnNTn(X) 
n=O 

where the coefficients AnN are given by 

An,N = f (xi)T(Xi) for n = O(1)N, with 

xi Cos r(2i + 1) for i = 0(1)N. = 2(N + 1) 
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The derivation of the coefficients An,,, is based on the orthogonality with respect to 
summation of the trigonometric functions, given by 

N N+ 1 
(3.3) E cos(jOj) cos(kj) = 2 jk for j, k _ N, i=O 2 

where Oi =r(2i + 1 )/2(N + 1) and be5, is Kronecker's delta. To evaluate the 
coefficients A.,N for a given f(x), we first note that 

Tn(xi) = cos -2i + 1) = T2i+1(Y.) 2 (N + 1) 

say, where 
nfr 

Yn COS 2(N + 1) 

The coefficients An,,N can then be evaluated in a similar way to the coefficients 
Bn,N, by summing a finite Chebyshev series of polynomials Tn(x) of odd degree 
only. Clenshaw [3] has shown in this case that we construct a sequence {bib, where 
bi satisfies the recurrence relation 

(3.4) bi - (4yn2 - 2)bi+l + bi+2 f(Xi)= 

with bN+i = bN+2 = 0, to give in turn bN , bol, etc. Then 

2 N 2 
(3 5) An2N = + E f(xi) Tn(xi) = Y(b - b1). 

Thus the coefficients An,N may be computed as readily as the coefficients Bn,N 

Let us now consider the relation between the coefficients An,N and an analogous 
to equation (2.4). From equations (1.1) and (3.2), we have 

(3.6) AnN = 2 E f(xi)Tn(Xi) = N( E ? a. T.(xi)Tn(X)" N +lt =o am I- \t=O 

Since the subscript m ranges over all positive integers, we need a generalization of 
equation (3.3). It is not difficult to show that 

N 0 for m 2p(N+I) an, 
(3.7) E Tm(xi)Tn(xi) = (-l1)(N + 1) + 1 f 

i=O 
2__for___=_________1____ 

where p is a positive integer. Equation (3.6) then gives 

(3.8) An,N = an + Z (-1) (a2p(N+1)-n + a2p(N+1)+f ) 
p-l 

for n = 0(1 )N. In particular, we find 

AN, -- = aN -aN+2 + 

which is not nearly as good an approximation to aN as 'BNN which has an error 
a3N + ... Since 

N 00 

(3.9) 4'N(X) = f(x) - 'N(X) = E' (an- AnN)Tn(X) + E anTn(X) 
n-0 n-N+1 
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we find on using equation (3.8) that 
00 00 00 

(3.10) 'tN = max I 4N(x) I ? 2 Z Ian I - ZI a(2p+l)(N+1) I <. 2 E I an, 
-1?xv n =N+1 p=O nN+1 

which may be compared with equation (2.8) for 4bN . 

When the coefficients an converge rapidly, we have a simple estimate for 4y. 

From equation (3.9), 

(3.11) N(X) = aN+lTN+l(X) + aN+2(TN(X) + TN+2(X)) + 

so that, if I aN+2 I, I aN+3 1, etc., are negligible compared with I aN+j 1, we have 

(3.12) 'ON = I aN+l , approximately. 

A comparison of equation (2.11) and (3.12) indicates that in the case when f(x) 

possesses a rapidly convergent Chebyshev series expansion, the truncation error of 

byN(X) is half that of IN (X ) . 

In Section 6 we shall compare the two polynomial approximations I'N(X) and 

4DN(X) to f(x) in greater detail. 

4. Explicit Forms of the Truncation Errors. The main purpose of this paper is 
to determine a priori the degree of the approximating polynomial bN (X) or 4N(x) 

to a function f(x), so that the maximum truncation error is less than some pre- 
scribed amount. In order to consider this error in more detail, we shall derive in 
this section explicit forms for 4N(x) and AtN(X) in terms of contour integrals. 

So far, we have considered f(x) to be defined for - 1 _ x _ 1. Let us continue 
this definition into the complex plane so that we consider f(z) defined for all z, 
and such that f(z) takes the value of f(x) on the basic interval [- 1, 11. First let 
us consider the truncation error PN(X) = f(x) - PN (X). In a recent paper, Elliott 
[5] has shown that 

(4.1) an i f (Z) dz 
(4.1i V/(Z2 - 1)(Z + /(z2 - 1))n 

where C is a contour enclosing -1 ? Re z < 1, Im z = 0, on and within which 
f(z) is regular, and I z + X/(Z2 _ 1) I > 1 for all z except-1 _ Re z _ 1, Im z = 0. 
Substituting this expression for an into pN(X) = Zl=N+l anTn(x), interchanging 
the integral and the sum, we find on evaluating the sum that 

PN(X) 

1 f f(z) I TN+1(X) TN(X) dz 
(4.2) 2iri ic (z - x) \/(Z2 - 1))'l(Z + \/(Z2 - 1))N (Z + x/(Z2 - 1))NF+1J 

To obtain 4N(X) as a contour integral, we first derive an expression for An,N as a 
contour integral. We start with Cauchy's formula, which states that if a function 
f (z) is regular on and within a contour C, then 

(4.3) f(x) = 27ri _Z dz, 

where x is any point within C. If C is chosen so that it contains the interval -1 < 
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x < 1, then, from equation (3.2), we have 
1~~~~ 

An,(N N + 1) Jf(z)jj dz where 
7ri(N + 1)f 

(4.4) TX = 
i + 1) 

Now it can be shown (see Appendix 1) that 

(4 5) T, (Xi) = (N + 1) UN-n (Z) 
(4.5) E~5- Z - Xi TN+1(z) 

where Un(x) is the Chebyshev polynomial of the second kind of degree n. It is 
perhaps appropriate at this point to recall the definition of Tn(z) and Un(z) for 
complex argument z. We have 

Tn(z) = 1 (Z + /(Z2 - 1))n + (z _ V(z2 1)-)nj 

(4.6) 
Un(z) = ((Z + V(z2 _ 1))n+1 - (Z (Z2 1))- } 

Combining equations (4.4) and (4.5) we have 

(4.7) AnN = * If f(Z)UN- (Z) dz. 

With this definition of AnN, the polynomial 4DN(X) can be expressed as 

if f (Z) fN;,U 

() NX) = E/ UN-n(z)Tn(X)} dz 
(4-8) 7rt~~ii C +1Z)h.4 N- 

1 f f(Z)[TN+l(Z) -TN+1(X)] dz 
27 J (Zc - X)TN+l(Z) 

(see Appendix 1). It then follows immediately on using equation (4.3) that 

(4.9) HN(X) = TN+1(X) | f(z) dz 2iri Jo(z - x)TN+l(z)' 

This equation is the starting point for the subsequent analysis. Before discussing the 
evaluation of this integral, let us derive a similar expression for #PN(X). From equa- 
tions (2.2) and (4.3), 

(4.10) Ben = - TNxf(z) dz, where xi = cos j 

Again (see Appendix 1), 

(4.11) ~ //T,(xi) -N[UN-nl(Z) - U--() 

)=0 z -Xi TN+1(z) - TN-1(z) 

which gives immediately that 

(4.12) Bn,N = 1* f(Z +[UN-(Z) - UN-n-2(Z)] dz 
7ri J TN+1(z) - TN..1(Z) 
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With this definition of B.,v we find 

1 r Af)z) TN W = _. __ E' [UN-.(Z) -UN-n,2(Z)IT.(X)}d 
(4.13) 

* TN+1(Z) -TN 1(Z) { 0 

1 f(z) { [TN+l(Z) - TN-1(Z)I - [TN+l(X) - TN-l(x)] d 
27ri Jc (z - x)[TN+l(z) - TN_ (Z)] 

(see Appendix 1 ). Combining this equation with equation (4.3), we find the required 
result for ^N(x), 

(4.14) PN(X) = [TN+l(X) -TN-l(X)I f f(z) dz 
27ri ic (Z - X)[TN+1(Z) - TN..(Z)f 

It should be noted that equations (4.9) and (4.14) are particular examples of the 
general expression for the truncation error of Lagrangian interpolation (see, for 
example, [6, p. 42]). However, in the above derivation we have also obtained ex- 
plicit expressions for the coefficients A.,N and B,,N in terms of contour integrals. 
Furthermore, equation (4.9) has been previously obtained by Lanezos (7], but 
Lanczos did not make very extensive use of it for obtaining a priori estimates of 
the truncation error, which is the purpose of this paper. In Sections 5 and 7 we 
shall consider the evaluation of these integrals when f(z) is a meromorphic function 
and an integral function, respectively. 

5. f(z) a Meromorphic Function. Let us suppose first that f(z) has M simple 
poles at the points zm (m = 1(1 )M) with residues Pm. We take our contour C 
initially as an ellipse E, with foci at z = : 1:, given by I z + V(z2 - 1 ) I = if ( > 1). 
The constant , is chosen so that ju < I Zm + V/(Zm2 _ 1) I for all m. We now let 
A- oo. In order that the contour C have f(z) regular within it, we enclose each pole 
Zm by a circle ym of radius em . The complete contour, for very large ,u, is taken as the 
ellipse E, described in the positive (counterclockwise) sense minus the M small 
circles ymi. Within this contour f(z) is regular. We now let tt -? co and a, 0 
for all m. If f(z) is such that the integral around the large ellipse tends to zero as 

-* >o, we find by the theorem of residues that 
M 

(5.1 ) (N(X) = -TN+l(x) E PM 
rn-i (zm - x) TN+1 (Zm)' 

and 
M 

(5.2) N(X) = -[TN+1(x) -TN-(X)] E ZM 
M-1 (Zm - X)[TN+1(Zm) - 

TN-,(Z,.)]' 

From these equations we may be able to evaluate the quantities ON and An explicitly, 
or find asymptotic estimates for them. Under certain conditions we can let M -4 00 

in these equations. This may be illustrated by means of an example. 
Suppose we wish to determine N such that 4b(X) and IN(X) approximate to the 

function 

(5.3) f~x = 
kk> 

(k2 + 1)-(k2-1) COSrX k> 1 

with an error of less than 105/2, say, when k = 1.2. Now the functionf(z) possesses 
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simple poles at the points zm, X m, where 

zm = 2m + i3 for m =, ?1,? z2,)**.; 
(5.4) 1 k2 + 1 

3 = - arcosh 1 

The residue of f(z) at Zm is - i/27r for all m, and at Zm is i/27r for all m. 
Since f(x) is an even function of x, we shall consider the truncation errors 42N (X) 

and 62NX(x). First, from equation (5.1), we have that for large N, the maximum con- 
tribution to the truncation error arises from the pair of poles at zo, 2o . Thus, for 
large N, 

(5.5) (I)2N (X) - iT2N+i(X) { -+ (~ 
27r { #f - X) T2N+l (i) (iO + X) T2N+I ( W3 

Defining t = fi + x/Q32 + 1), and writing T2N+l(z) - 2(z + X/(Z2 - 1))2N+X 

we have 

(5.6) 02NX) (_l)N+l2xT2N+l(x ) 
7r2N+1(132 + X2) 

When N is large, it is not difficult to show (see next section) that 

1 f 
73V2N+1 

i < 1, 

(5.7) 02N '-- 

7r(1 + #2)t2N+1 i j > 1 

Withk = 1.2, i.e. 03 = O.763, we findc02g < 10-5/2 when N = 8. 
We can proceed in a similar way to estimate {2N for large N. Considering the 

contribution to the truncation error from the pair of poles at zo, 2o, we find 

(58) Q 2(1)N+l X(T2N+l(x) - T2N-1(X)) 
(5.8) j 2N (X) ~ r(l + 42)S2N_1(32 + X2) 

so that 

(5.9) ip2N N(,32 + 1) for all ,B. 

Again, with k = 1.2 we have 022N < 10-5/2 when N = 8. 

6. Comparison of the Polynomial Approximations 4N(x) and JN(x). In Sec- 
tion 3, we showed that when f(x) possesses a rapidly convergent Chebyshev series, 
then 4N(X) has a maximum error which is approximately half that of TN(x). In 
comparing the two polynomial approximations we shall say that one approxima- 
tion is "better" than the other if the former has the smaller maximum deviation. 
We have found already one case in which 4PN(X) is better than TN(X), and one 
immediately asks the question whether this is true in general. To demonstrate that 
this is not the case, let us consider the function for which the coefficients a, are in 
geometric progression, i.e., we shall assume that a. = t', where 0 < t < 1. For t 
close to zero, the coefficients a. converge fairly rapidly; for t close to 1, we have a 
slowly convergent series. 
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It is not difficult to show that the function (1 - t2)/2(1 + t2 - 2tx) has its 
Chebyshev coefficients given by an = tn. This is a rational function possessing one 
simple pole on the real axis at z = (1 + t2 )/2t, with residue - (1 - t2) 'At. Equation 
(5.1) gives immediately that 

tN+l (1 - t')TAI+1(X) 
(6.1 ) kN(X) 

(1 + t2N+2)(1 + t2 
- 

2tx) 

so that ON is given by 4N(1) and we have 

(6.2) ~~~~tN+1l(1 + t) ______ (6.2) fN = (1 + t2N+2)(1 - t) (1 -t) 

for N sufficiently large. 
Proceeding similarly for ,6XN(X), equation (5.2 ) gives 

( 6.3 ) APN ( X) - t [TN+1(X) -TN-1(X)] (6-3) ON(X) = 
~(1 - t2N)(1 + t2 - 2tx) 

Writing x = cos 0, we have 

(6.4) IP(X) = -2t 
N+1 sin NO sin 0 

(6.4)~~~~~ (1 -t2N) (1+ - 2t cos 0) 

The problem is now reduced to finding ON . Obviously neither end point of the range 
gives IN(X) to be a maximum, and we must find the turning points of O'N(x). For 
large N, the problem is simplified; for {N(X) must take its maximum value close to 
the point where S(0, t) = sin 0/(1 + t2 - 2t cos 0) takes its maximum value. We 
find that the maximum value of S(0, t) is 1/(1 - t2), occurring when cos 0 
2t/(1 + t2). Thus for large N, we can write 

2t N12aN+l ( 6.5) Ar 
1 t2Nf)(1 - t2) '1 - t2 

Comparing equations (6.2) and (6.5) we find that tN < ON when t > /2 - 1. 
This analysis leads us to the following conclusion: if f(x) is such that the coefficients 
in its Chebyshev series expansion converge quickly, then 4N(x) is better than IN(x); 
if the coefficients are slowly convergent then TN(X) is better than 4N(x). We notice 
from equations (6.2) and (6.5) that in the limit as t -+ 0, -&N = 2ON. 

When f(x) is either an even or an odd function of x, we can show by arguments 
similar to those above that the 'JN(X) polynomial is always to be preferred to the 
4'N(x) polynomial. Suppose first that f(x) is an even function of x, and suppose we 
have a2n = t2n with a2n+l = 0, for 0 < t < 1. This corresponds to the function 
f(X) = (1 - t4 )/2{(1 + t2 )2 - 4t2X2J. We now find, 

2N(X ) 
2t 2N+2(l _ t2) XT2N+1(X) with ~2N() = (1 + t4N+2) [(1 + t2)2 - 4t2X2] wt 

(6.6) 2t 2N+2 2a2N+2 

42N = (1 + t4N+2)(1 - t2) (1 - t2) 

the maximum values of 42N(X) occurring at x = 1. Proceeding similarly we find, 

t(71 X [T2N+2(X) - T2N-2(X)] 
(6.7) AN ( X ) - 

(1 - t4Nf)[(1 + t2)2 - 4t2x2] 
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and for large N, this gives 

___ ___ ___ __ 2a2N ?2 
(6.8) 2N (1 - t4N)(1 - t4) 1 -t4 

Comparing equations (6.6) and (6.8) we have immediately that '2N < 02N for all 
t and not just for t > /2 - 1 as in the case of a generalf(x). 

A similar result can be shown to be true when f(x) is an odd function of x. 
We may sum up our results as in Table 1, which gives the better of IN (X) or 

IN(x) under the given conditions. 

TABLE 1 

Rapidly Convergent Slowly Convergent 
Coefficients an Coefficients a, 

general f(x) IN(X) IN (X) 
f(x) even '2N (x) '2N(x) 

f(x) odd I2N+1(x) I2N+1(X) 

Only in one case does the 4N(x) polynomial approximation give a smaller maximum 
error than the *1v(x) polynomial approximation. On these grounds we suggest that 
IN(x) should always be used, although it should be pointed out that in the author's 
experience it is only rarely that one of the maximum truncation errors is more than 
twice the other one. There is one further computational point that should be 
noted here. Clenshaw [4] states that in using the IN (X) approximation, if nothing 
is known of a suitable value for N, then one can start with a small N, and keep 
doubling N until the required precision is reached. In computing J2N(X), Most of 
the intermediary results obtained in evaluating IN(x) may be used again. Finally we 
shall show in Section 8 that INv(x) is to be preferred to 1N(X) if the quadrature 
method of Clenshaw and Curtis [2] is used. 

7. f(z) an Integral Function. The results of Section 5 do not, of course, include 
the case when f(z) is an integral function of z. For such functions we propose to 
find asymptotic estimates of the contour integral for large N, by the method of 
steepest descents. This approach has been successfully used by Elliott and Szekeres 
[8] in a similar problem of estimating an (as given by equation (4.1)) for large n. 
The principal result we shall require is the following (see, for example, de Bruijn 
[9] ). To find an estimate for X c exp[ (z)] dz, we deform the contour C to pass through 
the "saddle points" v defined by i'(v) = 0 (there may be more than one saddle 
point). Provided that the integral over the remaining part of C is negligible, the 
value of the contour integral is asymptotically equal to the contribution in the 
neighbourhood of the saddle point, and is given by 

(7.1) -\/(27r)al C"(v) 1-112 exp[t(t)], 

where a is a complex number defined by 

ir 1 
(7.2) al 1 and arg a =- - r 

2 2 
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Before applying this result we shall modify slightly the definitions of 4N(x) 

and A&N(X) as given by equations (4.9) and (4.14), respectively, for the case of N 
large. Now for large N, we have TN+1(Z) (1/2 )(z + V/(z2 _ 1) )N-4I from equa- 
tion (4.6). Thus we can write 

71 Jc(z x) (z + V(z2 1))N+l 
and 

[TN+1(X) - TN-l(x)I f 1 f(z) 
(7.4) (Xz) '' 27ri (z - x) /(Z2 -1)(Z + V/(Z2 1))N 

In order to apply the method of steepest descents, we express each integral in the 
form .fc (z - x)F exp. [(z)] dz. We assume that the function (z - x)1 changes 
very little as the contour passes through a saddle point, and can for our purposes be 
taken as constant. 

For 4N(X), we have 

(7.5) t(z) = log f(z) - (N + 1) log(z + x/(z2 - 1)) 

so that the saddle points are given by solutions of 

(7.6) /(Z2 _ 1)/f(Z) = N + 1, 
fAz) 

and the second derivative t"(z) is given by 

(7.7) ,(z) - d (f'(z) + (N + 1)z 
Wz \ f(_z)) (2 -1)312 

If equation (7.6) has M roots tm for m = 1(1)M, then 

gN (X) 1 TA (to ) |m(?m) 

(7.8) 
(m X 

where tait = 1 argam = arg () 

from which 4N may be estimated. 
For AiN(X), we proceed similarly. The saddle points are given by the solutions of 

the equation 

(7.9) V(Z2 1)f(Z) - z(2Z + N 
fAz) x(2-1 

and the second derivative t"(z) is given by 

(7.10) t"(Z) = d (f'(z)\ + Z2+1 + Nz 
dz- \.fz (Z 2 - 1)2 (Z2 - 1)3/2 

If equation (7.9) has M roots rm for m = 1(1 )M, then 

[TN+1(X) - TN-1(X)I 
1/'N (X ) ix/(27r) 

(7.11) m- amf(rm+) 
(7-11)~~ m (M_ -X) I "1(~m) 11"2V\(r2 - 1)(~M + V%(rm2 
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where 

taint = 1, argam I--arg ( 

Again, with this expression for JPN(X), we may estimate AtN . 

These results may be simplified a little since we have assumed that N is large. 
For example, for both cN(x) and 6N(x) we may assume that the saddle points are 
given by the same equation, viz., 

(7.12) V/(Z2 - 1) f(Z) - N. f(z) 

Under the same assumption of N large, we have in each case that the second deriva- 
tive ("(z) is given approximately by 

(7.13) (Z) = d 0f'(Z) N+ z 
dz_ (_z)) (Z2 - 1)312' 

Thus the determination of one set of saddle points, and the evaluation of one set of 
second derivatives may be sufficient for estimating both 'N and ON. 

8. The Quadrature Method of Clenshaw and Curtis. We now consider the 
truncation error in a quadrature method recently proposed by Clenshaw and 
Curtis [2]. Their algorithm is briefly as follows. To evaluate the integral I(x), where 

(8.1) I(x) = f(t) dt for -1 < x < 12 

we choose an integer N and approximate f(t) for -1 < t < 1 by the polynomial 
'N(t) (using the notation of this paper). Having calculated Bng, the coefficients 
p. in the Chebyshev expansion of I(x) can be found from the relation 

(8.2) A Bn-1- B,+lN, for n = 1(1)N + 1. 
2n 

The coefficient #o is found from the condition that I( -1 0. For any value of x, 
the Chebyshev series for I(x) can then be readily summed. We shall now find an 
asymptotic form of the error in I( 1), for large N. 

From Sections 5 and 7, we find in each case that ,N6(x) satisfies a relation of the 
form 

M 

(8.3) 4IN(X) = [TN+I(X) - TN-1(X)] E 
gm 

i= (x - Zm)' 

If EN(w) denotes the error in 1(1) when f(x) is approximated by the polynomial 
''N(X) then, 

1 ~~M 
(8.4) EN(t) = L N(X) dX = 

gm(JN+l(Zm) - JN-l(Zm)), 

where Jn(z) is defined by 

(8.5) Jn(z) = TL x ) dx. 
lx - Z 
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On writing x = cos 0, and integrating the resulting integral by parts, we find, 
for large n, that 

(8-6) Jn (Z) -n- [ -1 + n2 ] 

The coefficients C(z) and D(z) are defined by 

2z z 
C(Z) _ 1' D(z) -+5 for n even; z2 ~~~z2-1 

(8.7) C - Z2 D,(z) =2(2z2 + 1) 
Z - z2-1' Dz2-1 , for n odd. 

Substituting equations.(8.6) and (8.7) into equation (8.4) we find 

(8.8) EN2 -N 1)2 E g. C(Zm) [1 + (N2 + 12)D(zm) 

i.e., EN(*-) 0(1/N3) for large N. 
It is of considerable interest to derive the corresponding expression for EN(4), 

the error in I(1 ) if f(t) had been approximated by 4IN(t) instead of TIN(t). We find 

(8.9) EN (4) (N + 1) 2 E hm C(Zn) I + D(m) 21 (N+)MiL (N +1 J 

where we have assumed thatkN (X) is of the form 

ON(X) = TN+l(X) E hm 
m=1 (X - Zm) 

from the results for meromorphic and integral functions. Equation (8.9) shows 
that for large N, EN(QI) 0(1/N2). 

Thus, when considering integration over the complete interval [-1, 1] the 
!N(X) polynomial approximation to f(x) is to be preferred to 4DN(x) since for large 

N, the truncation error is smaller. This has considerable importance in two problems 
considered so far in the literature. Clenshaw and Norton [10] have proposed a method 
using Chebyshev series for the numerical solution of boundary-value problems 
involving nonlinear ordinary differential equations. Elliott [11] has considered the 
numerical solution of Fredholm integral equations. In both cases collocation at the 
points xi = cos(ri/N) for i = 0(1)N was used. Certainly, as far as the latter 
application was concerned, the author based his choice of collocation points on 
computation expediency rather than any mathematical reasoning. The above 
analysis justifies this choice on the basis of minimising the truncation error. 

9. Conclusion. In this paper we have considered the problem of finding a priori 
estimates of the truncation errors involved when a function f(x), defined for 
-1 ? x _ 1, is approximated by polynomials 4bN(X) and TN (X). These polynomials 
are Lagrangian interpolation polynomials obtained by collocation with f(x) at the 
points xi = cos(7r(2i + 1)/2(N + 1)) and xi = cos(7ri/N) for i = 0(1)N, 
respectively. Such estimates have been obtained when f(z), considered as a function 
of the complex variable z, is either a meromorphic or an integral function. One 
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of the results of the analysis is that the polynomial approximation 1N(X) is to be 
preferred to 4FN(x) in many practical circumstances. 

APPENDIX 1. In Section 4, we quoted without proof some results that will now 
be proved. The starting point is the identity 

TN (Z) - TN(X) _ UN-l(z) + 2 E UN-f-l(z)Tn(x) (Al)= SW 2 UNn1Z)T X 
Z n=1 

This can be proved by multiplying each side of the equation by (z - x) and using 
the well-known recurrence relation for Tn(x) and Un(x), see [1]. With this relation 
the evaluation of the finite sums in equations (4.8) and (4.13) follow after a little 
algebra. 

From these two equations we can obtain the results given in equations (4.5) and 
(4.11). First, for equation (4.5), we have 

N ~~~N N 
Ad Tn ( xi ) Ad Tn(z) - Tn(xi) +T(z 1 

(A2) - _ + n(Z) 
i=0 Z - Xi i=O Z - Xi i=0 Z - Xi 

Since the xi are the zeros of TN+,(x), we have immediately that 

(A3) TN?1(z) _ 
(N + 1 ) UN(z) (A3) ,TN\--m S =-- n 

i=O (Z Xi) - TN+1(Z) TN+1(Z) 

Again from equation (Al), we have 

(A4) Tn(Z) - Tn(xi) = (N + l)Un-1(Z), 
i=O Z -Xi 

since ,$==o T,(xi) 0 for all r # 0. Combining equations (A2)- (A4), we find 

(AS) T,(Xt) - (N + 1 ) UN-n(z) 
i(0 (Z - xi) TN+l(Z) 

We can proceed similarly to prove equation (4.11). As before, we write 
N ~~~~N N Ott E / Tn(Xi ) ttTn(z) - Tn(xi>) +Tn A" El (A6) _" - -. .. + Tn(z) Z 7 

i=O Z - i-o Z - Xi i=o z - xi) 

Since xi are in this case the zeros of [TN+1(Z) -TN-1(Z)], we have 

N 1 (N + 1)UN(z) - (N - 1)UN-22(Z) 
i=0 (Z - X) TN+1(z) - TN 1(z) 

whence 
N,, 1 N[UN(z) - UN-2(Z)] 

(A7) i=O (Z - xi) TN+1(Z) - TN-l(z) 

Again, from equation (Al), since Z"XNo Tr(xi) - 0 for all r # 0, we have 

( A8 ) Elf N7n)T(Z) - ( - NUn-i(Z). 
(=o (Z - xi) 

Combining equations (A6)-(A8), we find the required result, 

tt Tn (xi) N[UN-n(z) - UN-n-2(Z)I (A9) i=0O (Z - xi) TN+l(z) - TNj(z) 
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